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Abstract

Process-oriented diagnostics for Madden-Julian oscillation (MJO) simulations are
being developed to facilitate improvements in the representation of the MJO in weather
and climate models. These process-oriented diagnostics are intended to provide insights
into how parameterizations of physical processes in climate models should be
improved for a better MJO simulation. In this paper, we propose one such process-
oriented diagnostic, which is designed to represent sensitivity of simulated convection
to environmental moisture: composites of relative humidity (RH) profile based on
precipitation percentiles.

The ability of the RH composite diagnostic to represent the diversity of MJO
simulation skill is demonstrated using a group of climate model simulations
participating in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and
CMIP5. A set of scalar process metrics that captures the key physical attributes of the
RH diagnostic is derived and their statistical relationship with indices that quantify the
tidelity of the MJO simulation is tested. We find that a process metric that represents the
amount of lower-tropospheric humidity increase required for a transition from weak to
strong rain regimes has a robust statistical relationship with MJO simulation skill. Our
results suggest that moisture sensitivity of convection is closely related to a GCM'’s

ability to simulate the MJO.
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1. Introduction

The Madden-Julian oscillation (MJO, Madden and Julian 1972) is the dominant
mode of intraseasonal variability of the tropics, characterized by planetary spatial scale,
a 30-60 day period, and eastward propagation. The MJO interacts with weather and
climate phenomena globally (e.g. see reviews in Lau and Waliser, 2011; Zhang 2013).
For example, it affects mid-latitude extreme weather events (e.g. Jones 2000), modulates
tropical cyclone activity over almost all basins (e.g. Maloney and Hartmann 2000),
influences active and break periods of the monsoons globally (e.g. Wheeler and
McBride 2005), and triggers and/or terminates some El-Nino events (e.g. Takayabu et al.
1999). Considering its significant impact on high-impact weather and climate
phenomena, an appropriate representation of the MJO in climate models seems
necessary for an accurate estimate of future changes of those phenomena.

Historically, since the first diagnosis of intraseasonal variability simulated in the
models from the Atmospheric Model Intercomparison Project (Slingo et al. 1996), the
representation of the MJO in climate models has generally remained unsatisfactory
(Waliser et al. 2003; Sperber et al. 2005, 2011; Lin et al. 2006; Kim et al. 2009; Hung et al.
2013). Lin et al. (2006) showed that only 2 among 14 models in the Coupled Model
Intercomparison Project-3 (CMIP3) had MJO variance comparable to observations, with

even those lacking realism in many other MJO characteristics. Although the models
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participating in CMIP5 simulate stronger MJO variance than that of CMIP3 models, the
improvement is incremental at best (Hung et al. 2013).

Meanwhile, previous work has shown that the representation of the MJO in
GCMs can be improved by changing specific aspects of their cumulus parameterization
schemes. Changes that inhibit deep cumulus convection appear to be particularly
effective in improving MJO activity (Tokioka et al. 1988; Wang and Schlesinger 1999;
Maloney and Hartmann 2001; Lee et al. 2003; Zhang and Mu 2005; Lin et al. 2008; Kim
and Kang 2012; Kim et al. 2012). Unfortunately, there is an apparent conflict between
our ability to improve the MJO simulation while maintaining a realistic basic state. For
example, Kim et al. (2011a) showed that mean precipitation over the warmest oceanic
areas, which are the north and south western Pacific during boreal summer and winter,
respectively, becomes excessive and therefore worsens the mean state as a result of the
same parameterization changes that strengthen the MJO in a number of different
models. This suggests that those changes in parameterization that benefit the MJO
simulation may have been rejected because of higher priority being placed on the mean
state simulation compared to simulation of the MJO.

Ideally, a better parameterization must help improve both the mean state and the
MJO. Toward this goal, it would be helpful if we have a diagnostic that fulfills all of the
following conditions:

i) the diagnostic can be constructed from currently available observations;
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ii) the diagnostic is related to certain characteristics of unresolved-scale processes

(i.e. parameterizations) in GCMs;

iii) the diagnostic represents certain features of resolved-scale processes that are

important in the MJO dynamics.

If a diagnostic satisfies the first and second conditions, it can provide insight into
how parameterizations should be improved to make model behavior similar to that
diagnosed from observations. If that diagnostic also fulfills the third condition, it will be
a useful tool that could help improve an MJO simulation for the correct physical reason.
Although we expect the mean state will be improved if we improve the MJO simulation
for the right physical reason, it is also possible that other processes may be missing or
misrepresented that prevent a better MJO and realistic mean state at the same time. The
international MJO Task Force' has made efforts to develop diagnostics that fulfills the
three conditions listed above — process-oriented MJO simulation diagnostics, with the
overall goal of facilitating improvements in the representation of the MJO in weather
and climate models (Wheeler and Maloney 2013).

In this paper, we present one process-oriented MJO simulation diagnostic, which

is designed to better understand the relationship between moisture and convection in

! The international MJO Task Force had been under World Weather Research Program
(WWRP)-The Observing System Research and Predictability Experiment (THORPEX)/World
Climate Research Program (WCRP) Year of Tropical Convection (YOTC) during 2010-2012,
and is currently under World Meteorological Organization (WMO) Working Group on
Numerical Experimentation (WGNE) since January 2013.



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

the tropical atmosphere, with a particular focus on the lower-tropospheric relative
humidity (RH). We base the diagnostic on lower-tropospheric RH over the tropical
Indian Ocean that is binned by precipitation percentiles (hereafter, RH Composite based
on Precipitation, RHCP).

Similar diagnostics to the RHCP diagnostic used here have been previously used
to assess simulations of the MJO in different models (Thayer-Calder and Randall 2009;
Zhu et al. 2009; Kim et al. 2009; Del Genio et al. 2012). Although these studies showed
the usefulness of tropospheric humidity diagnostics to qualitatively distinguish
relatively better MJO models from relatively worse ones, these diagnostics have
previously been applied to only a limited number of models. Also, more importantly,
the critical aspects and features of the tropospheric humidity distribution and its
variability required for an improved simulation of the MJO have not been quantified.
To demonstrate the general utility of our RHCP diagnostic, we use multi-model
simulation data in the CMIP3 and CMIP5 archives. To identify the key features of the
RHCP diagnostic that are related to the simulation capability of the MJO, we derive
metrics from the diagnostic and test their statistical relationship with some standard
measures of the fidelity of the simulated MJO. Note that although the focus here is on
climate models, our findings are equally relevant to weather forecast models.

This paper is organized as follows. Section 2 describes model simulations and

observations used, as well as the metrics for MJO simulation fidelity. The way to build
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up the RHCP diagnostic will be explained in detail in Section 3. The relationship
between the metrics derived from the RHCP diagnostic and the fidelity of the simulated

MJO are investigated in Section 4. The summary and conclusions are given in Section 5.

2. Data
a) Model simulations

We use simulation data from a subset of coupled ocean-atmosphere models
participating in CMIP3 and CMIP5. Table 1 contains a list of the models used in this
study with their convection schemes and horizontal resolutions of their atmospheric
component model. Readers are referred to Meehl et al. (2007) and Taylor et al. (2012) for
more detailed descriptions of the CMIP3 and CMIP5 archives. Note that the selection of
models was based on data availability. For each model, daily-averaged precipitation
and outgoing longwave radiation (OLR) during a 20-year period from the 20" century
simulations was obtained from the archives. For tropospheric RH, we downloaded only
a 3-year period of daily data because of limited data storage capacity. Therefore, the
measures of MJO simulation fidelity are derived using 20 years of data, while the RHCP
diagnostic and the metrics from it are constructed using 3-year data. This inconsistency
in data period could affect the results presented here, but evidence indicates that the

effect is negligible because the observed RHCP diagnostic derived from 20 years of data
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is nearly identical to that from 3 years (not shown). For CMIP3 models, RH was
calculated using temperature and specific humidity because RH was not available in the
archive. In the case of CMIP5 models, RH was downloaded directly from the archive.
The daily averaged RH profiles over the equatorial Indian Ocean (10°S-10°N, 60-90°E)
are used to construct the RHCP diagnostic. Because different models have different
numbers of vertical levels, we chose four pressure levels that are common to all models
used: 1000, 850, 700, and 500 hPa. Among these levels, 850 and 700 hPa are used for the
RHCP diagnostic of CMIP3 and CMIP5 models. The reason for excluding 1000 and 500

hPa is given in the following sections.

b) Observations and reanalysis

Three precipitation estimates are used to represent the uncertainty in the
observations. Version 1.1 of the Global Precipitation Climatology Project (GPCP,
Huffman et al. 2001) and the Tropical Rainfall Measuring Mission (TRMM, Huffman et
al. 2007) 3B42 version 6 daily-averaged data are used as observational estimates of
precipitation. We also use daily-averaged precipitation from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ReAnalysis-Interim (ERA-I; Dee et al.
2011). We expect GPCP and TRMM precipitation to be better estimates of observations
than ERA-I precipitation, because the reanalysis precipitation product is model-

dependent. Nonetheless, ERA-I precipitation is also used in this study. This is because it
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was suggested that the satellite measurements used in this study lack capability of
observing light rain events (Behrangi et al. 2012), and because the ERA-I precipitation is
more physically consistent with one of the RH data used. Daily averaged RH profiles
were obtained from two reanalysis products: ERA-I and NASA’s Modern-Era
Retrospective Analysis for Research and Applications (MERRA, Rienecker et al. 2011).
RH from MERRA is used only when we explore the uncertainty in the RHCP diagnostic
originated from the source of RH data (Figure 3). All simulations and observations
described in this section were regridded into a 2.5°x2.5° grid using a bilinear

interpolation scheme before any calculations.

c) Fidelity of the MJO simulations

The fidelity of the MJO simulation needs to be quantified in order to make
reliable inferences about relationships between the sensitivity of simulated convection
to tropospheric humidity and the capability of a model to simulate the MJO. Effective
metrics for the latter are needed. Because development of a method that quantifies the
quality of MJO simulations in an objective manner is still the area of active research
(Crueger et al. 2013), we choose three methods to reduce a possible bias caused from
using only one metric.

One simple measure of the MJO is based on the space-time power spectrum of

equatorial rainfall (or zonal wind). The ratio of eastward to westward power (E/W ratio)
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at MJO time and space scales (zonal wavenumbers 1-3 and periods 30-60 days) reveals
the prominence of the eastward propagating intraseasonal variability relative to its
westward counterpart (e.g. Zhang and Hendon 1996; Lin et al. 2006; Kim et al. 2009)
and is a useful indicator of how prominent the MJO is relative to the background
variability. Another measure of MJO activity is the eastward power summed over
eastward wavenumbers 1-3 and periods 30-60 days. We refer to this as “East” power.
The use of East power alone as a metric for MJO simulation fidelity could be
inappropriate if it is unrelated with its westward counterpart (West power). Then
model A, which has a smaller E/W ratio than that of model B, could have a greater East
power than that of model B. This is usually not the case within the group of models we
use, however, as a strong linear relationship between East and West power exists?. This
allows the use of East power as an index that gives a direct indication as to whether the
level of eastward power is realistic. The third measure of MJO fidelity is Rmax, that was
recently proposed by Sperber and Kim (2012). Rmax is the maximum correlation between
the two time series obtained by projecting model OLR anomalies onto the leading pair
of empirical orthogonal functions (EOFs) of observed OLR that capture the MJO. The
MJO is deemed well simulated if the correlation between the two leading PCs is strong
at a lead-time of about 10-15 days, thereby demonstrating coherent eastward

propagation with appropriate spatio-temporal structure.

? Correlation coefficient between “East” and “West” is about 0.68, which is statistically
significant at 95% confidence level.

10
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These measures of MJO fidelity are developed using 20-years (1979-1998) of daily
precipitation and OLR data from observations and from the model simulations. The
wavenumber-frequency spectra, which the E/W ratio and East power measures of MJO
activity are based on, are derived from 10°5-10°N averaged precipitation using the Fast
Fourier Transforms applied to 19 segments that are 180 days long (i.e. 19 boreal winters
during November-April). For Rmay, the EOF was performed over an extended Indo-
Pacific warm pool area (45-240°E, 20°5-20°N) using OLR data during boreal winter
(November-April). The values of these three measures from all of the models and the
observations are presented in Table 2. In terms of Rma, no model simulates an MJO
stronger than the observed one. Regarding the E/W ratio and East, however, there are
models whose MJO is stronger than the observed MJO. For example, cnrm_cm3 and
CNRM-CM5 exhibit the E/W ratio values (5.91 and 4.95, respectively) that are much
higher than that of observations (2.09-2.73), and than that of other models. Table 3
provides inter-correlation coefficients between the three measures of MJO fidelity. The
correlation coefficients are all positive and statistically significant at the 95% confidence

level, indicating they are consistent measures of the MJO simulation fidelity.

3. RHCP diagnostic

11
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In this section, we generate the RHCP diagnostic and derive a set of metrics from
it. The physical insights from the diagnostic and a brief summary of previous usage of
the diagnostic are also given.

a) Construction of the RHCP diagnostic

The main purpose of the RHCP diagnostic is to present RH profiles for different
regimes that are distinguished from each other by the strength of precipitation. In this
study, instead of absolute values of precipitation that has been used in other studies
(Thayer-Calder and Randall 2009; Kim et al. 2009; Del Genio et al. 2012), we use
precipitation percentiles to make this distinction. Precipitation itself is useful when
analyzing a small set of models, but it could be problematic when applied to a large
group of models. This is because the statistics of precipitation vary widely between
models (Figure 1 and 2). Our calculation of percentiles includes the zero precipitation
rate. In fact, in GPCP and TRMM, zero precipitation occupies the lowest 60 and 55
percentiles, respectively, meaning that 60% and 55% of the time there is no rain in
GPCP and TRMM (Figure 1). When more than one percentile is occupied with zero
values, it is impossible to distinguish RH profiles between those percentiles. Therefore,
if this is the case, we make an average of RH profiles over all zero values and assign the
mean value to all percentiles filled with zero precipitation values. This is why in Figures
4 and 5 TRMM and GPCP show the same RH value for the lowest 55 and 60 percentiles,

respectively.

12
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Figure 1 and 2 display precipitation values of lower 70 and upper 30
precipitation percentiles, respectively. There is a considerable spread among models in
almost all percentiles. For example, the top precipitation intensity at the 100* percentile
(upper 1%) is lower than 30 mm dayin giss_aom, iap_fgoalsl_0_g, and inmcm3_0,
while it is greater than 60 mm day?in cccma_3_1_t63, cnrm_cm3, and ingv_echam4.
This indicates that the same precipitation rate would correspond to a different
percentile in different simulations. Thus, using precipitation percentiles alleviates the

influence of systematic discrepancies in the precipitation intensity among the models.

b) Physical insights

Figure 3 presents the RHCP diagnostic, which shows the averaged RH profile
plotted as a function of precipitation percentiles, constructed using observations and
reanalysis data over the central equatorial Indian Ocean (10°S-10°N, 60-90°E). Three
different precipitation datasets and two different RH data are used to demonstrate
uncertainties in this diagnostic. The lack of ability in two out of three precipitation
products (GPCP and TRMM) to distinguish lower percentiles from each other (Fig. 1)
inhibited us from estimating the observational uncertainty for the 1s-60% percentiles.

From Figure 3a-e, which will be regarded as observations in this study, aspects of
the large-scale modulation of tropical convection can be seen. For example, strongest

rain events (e.g. 100" percentile), which presumably are associated with strong dee
& p p y & p

13



265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

convection, occur only when the column is nearly saturated in a very deep layer (up to
200 hPa). When the precipitation rate falls below the 70 percentile, high RH (> 85%) is
mostly confined to a shallow layer near the surface (1000-900 hPa). The difference
between weak- and strong-precipitation regimes suggests that during the transition
between the two regimes, the lower troposphere above the boundary layer (850-500 hPa)
experiences a significant moistening. Similar interpretation of the RHCP diagnostic
(with slight variations) has been provided by earlier studies (e.g., Zhu et al. 2009).

Although the broad features of the RHCP diagnostic described above are not
sensitive to the precipitation and RH data used, some details are. In particular, the
gradient in ERA-I RH between weak and strong rain regimes is much greater when
GPCP precipitation is used, compared to that constructed using ERA-I precipitation.
Also, when MERRA RH is used instead of ERA-I RH, the depth of humid layer near the
surface becomes shallower, while RH near the 600 hPa becomes greater. Figure 3e
displays the root mean squared difference between the five results divided by the
average of them, which is an estimate of observational uncertainty. For the 80" or
higher percentile, the standard deviation is smaller than 10% of the average, while it
reaches 15-20% of the average at near 500 hPa for the 60"-65% percentiles.

In short, the RHCP diagnostic represents physical aspects of the moisture-
convection relationship over the central equatorial Indian Ocean, and those features are

not sensitive to the data used to construct the diagnostic.
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c) Relevant MJO dynamics

The key feature in the RHCP diagnostic concerning the relationship between
tropical convection and environmental moisture is the tight coupling between them.
The strong coupling between tropical convection and lower-tropospheric moisture has
been shown to be an intrinsic characteristic of the tropical atmosphere (Bretherton et al.
2004; Holloway and Neelin 2009). Furthermore, Yasunaga and Mapes (2012) showed
that the MJO is distinguished from other convectively coupled equatorial waves by the
strong coupling between precipitable water and precipitation (see their Fig. 4). This
observational evidence suggests that the tight coupling between moisture and
convection should be included in theories of the MJO.

Moisture-convection coupling is a crucial ingredient in some theoretical
considerations on the dynamics of the MJO (Blade and Hartmann 1993; Raymond 2001;
Bony and Emanuel 2005; Sobel and Maloney 2012, 2013). In these views, enhanced
convection associated with the MJO is strongly tied to the positive moisture anomaly,
and the growth/decay and propagation of the MJO can be explained by the processes
regulating the moisture anomaly. In this case, growth/decay of the MJO is controlled by
the physical processes responsible for supporting/reducing moisture anomalies in
regions of enhanced convection, and propagation is regulated by the processes

responsible for moistening to the east of the convecting region and drying to the west.

15
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This “discharge-recharge’ (Blade and Hartmann 1993) or ‘moisture mode’ (Raymond
2001) view has been supported by observations (e.g. Kemball-Cook and Weare 2001;
Yasunaga and Mapes 2012), reanalysis (Sperber 2003) and modeling studies (e.g.
Sperber et al. 2005; Thayer-Calder and Randall 2009; Zhu et al. 2009, Maloney et al.
2010).

In these views of MJO dynamics, it is argued that the time scale required for the
atmosphere to build-up lower-tropospheric moisture and to discharge it determines the
period of the intraseasonal oscillation. A particularly critical physical process is the
gradual accumulation of moisture during the recharge period, which accompanies
deepening and strengthening of the cumulus clouds and takes 15-30 days to transition
from a dry, non-precipitating state to a strongly convecting state. During the recharging
period, strong convection, which consumes the accumulated moisture, should not be
prevalent. This time scale of the recharge process determines the period of MJO, which
is 30-60 days. Also, the recharge preferentially occurs to the east of the developing
convective envelope, thus driving the eastward propagation. Therefore, for a climate
model, an appropriate simulation of the sensitivity of cumulus convection to
environmental humidity would be a necessary condition for a reasonable MJO

simulation.

d) Previous usage

16
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Moisture diagnostics related to our RHCP diagnostic have been used to
distinguish a GCM with a relatively good MJO from a GCM with a relatively poor one
in Thayer-Calder and Randall (2009), Zhu et al. (2009), Kim et al. (2009), Kim et al.
(2011), and Del Genio et al. (2012). In Kim et al. (2009) and Xavier (2012), the moisture
diagnostic was applied to a set of models that exhibited a range of abilities to simulate
the MJO. The findings in these studies support the argument that if a model better
represents the relationships between the rainfall rate and environmental humidity as
depicted in the RHCP diagnostic, the model tends to simulate a better MJO. A typical
symptom of relatively poor MJO simulations in these studies is that they simulate too-
strong rainfall rates for dry lower-tropospheric RH, meaning they lack the appropriate
sensitivity to environmental moisture.

The lack of sensitivity of the parameterized convection to environmental
moisture was reported in Derbyshire et al. (2004) as an issue common to a number of
models. This lack of sensitivity may result in the poor simulation of the MJO in many
models, in which the effect of a cumulus ensemble on the large-scale environment is
represented with parameterization schemes. If a strong relationship between the
sensitivity of convection to environmental moisture and the fidelity of MJO simulations
is found, we could have more confidence in this argument. To investigate this further,

we will derive some quantifiable metrics of the moisture-rainfall sensitivity depicted by
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the RHCP diagnostic and apply them to a set of models that exhibit a wide range of

capabilities to simulate the MJO.

e) Derivation of moisture sensitivity metrics

In order to derive quantifiable metrics from the RHCP diagnostic, we
constructed the RHCP diagnostic using model simulation data. We present in Figures 4
and 5 the RHCP diagnostic at 850 and 700 hPa, respectively, since as discussed in
Section 3b most pronounced moistening occurs above the boundary layer in the
transition between the weak and strong precipitation regimes. The model results are
compared to those from the ERA-I RH and the three precipitation products.

In Figures 4 and 5 the lower-tropospheric RH increases with precipitation
percentile in all models and observations as expected, although considerable spread
exists among models for all percentiles. For example, in bccr_cm2_0, ecnrm_cm3, and
MRI-CGCM3, RH in the lower troposphere is greater than 90% for the upper 10
precipitation percentiles, while the lower-tropospheric RH hardly exceeds 80% in
inmcm3_0, mri_cgem2_3 2a, and CanESM2. This suggests that the former group of
models requires a moister environment than the latter group to produce relatively high
rainfall rates. The difference of lower-tropospheric RH between the strong and weak
rain regimes also shows variability among simulations. A greater difference suggests a

more sensitive convection response to lower-tropospheric RH. In this regard, ERA-I
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exhibits RH for the top (100%) percentile that is about 45% greater than that of the
bottom (1¢!) percentile at 850 hPa (Figure 4). This difference is greater at 700hPa, and is
about 50% (Figure 5). Models show a wide range of RH differences between the top and
bottom percentiles. For example, at 700hPa, MRI-CGCM3 shows a RH increase of about
65%, while FGOALS-s2 experiences about 40% increase of RH (Figure 5).

These results suggest that both the lower-tropopheric RH in the strong rain
regime, and the difference of lower-tropospheric RH between the strong and weak rain
regime can be a measure of the moisture sensitivity exhibited by model convection, and
will be used as metric in the following. The former can be represented as an average of
lower-tropospheric RH for the upper X percent of rain events (RH“P¢" *%), while the
latter can be the difference between RH¥PPe™ X% and RH'We™ Y% where RH?Ye" Y% is an
average of lower-tropospheric RH for the lower Y percent of rain rates, as illustrated in
the lower part of Figure 4a. The latter moisture sensitivity metric (RH"PPe" X% —
RH'ower Y%) represents the gross gradient of mean RH between the weak and strong rain
regimes. In our analysis, lower-tropospheric RH will be measured by a simple average
of RH at 850 and 700 hPa levels. The 500 hPa level is excluded because inclusion of the
level degrades the relationship between the moisture sensitivity metric and the MJO
simulation fidelity metrics (not shown). By choosing levels in the lower-tropospheric
layer (850 and 700 hPa) that exclude the planetary boundary layer, we aim to capture

only the effects of environmental air on cumulus convection through entrainment to
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cumulus updrafts, and excluding the effects from the planetary boundary layer
moisture (i.e. increasing or decreasing convective available potential energy). Therefore,
RH at 1000 hPa level is not used in the calculations below. Properly representing the
effects of entrainment in the lower free troposphere has been shown to be critical for
producing realistic convective sensitivity to environmental humidity in models (e.g.

Sahany et al. 2012).

4. Statistical relationship between MJO simulation fidelity and moisture-convection
coupling metrics

We now explore the statistical relationship between the moisture sensitivity
metrics derived from the RHCP diagnostic and the measures of the MJO simulation
fidelity. Our examination revealed that the RHYPPe"*% — RH!OWerY% metric has a
stronger relationship with the MJO simulation fidelity metrics than RHPPe" X%
regardless of Y (not shown). This implies that in a GCM that simulates a relatively
skillful MJO, the mean RH of the strong rain events is relatively higher than that of the
weak rain events. Therefore we present later only the results based on RH¥PPer X% —
RElower Y%

Figure 6 presents the linear relationship (i.e. correlation coefficient) between

RHPPer X% _ RHower Y% and three measures of the MJO simulation fidelity as a function
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of X (x-axis) and Y (y-axis). Only model data is used in the calculation of the correlation
coefficients. Although the dependence of the linear relationship on X and Y varies with
the measure of the MJO simulation fidelity used, the linear relationship is statistically
significant at 95% confidence level, which is 0.32?, in a wide area for all MJO simulation
fidelity metrics used. Also, Figure 6 shows that the strongest relationship is found when
the E/W power ratio is used as a measure of the MJO skill. An average of the linear
relationship with the three MJO simulation fidelity metrics (Figure 6d) suggests that the
average correlation coefficient is greater than 0.7 if we choose X between 2 and 20, and
Y between 15 and 30, respectively.

As seen in Figure 7, when X is fixed at 10, the averaged correlation coefficient is
higher with Y near 20 (Figure 7a), and when Y is fixed at 20, the averaged linear
relationship maximizes with X around 10 (Figure 7c). In both cases, the peak is broad
enough to conclude that the averaged linear relationship is not sensitive to a specific
choice of X and Y. With X=10 and Y=20, the moisture sensitivity metric (RH*PP¢" 10% —
RH'"Wer20%) can explain on average 50% of inter-model variability in their MJO
simulation fidelity, although its skill varies with the MJO simulation fidelity metrics

(Figure 7b,d).

3 Note that we count all models when estimating the degree of freedom (=28). The degree of
freedom could be lower than the number of models we are using, as there are different versions
of same models: gfdl cm2 0/gfdl cm2 1, CMCC-CM/CMCC-CMS, MIROC4h/MIROC-
ESM/MIROC-ESM-CHEM, and MPI-ESM-LR/MPI-ESM-CHEM. If we consider these groups
of models as one model then the degree of freedom drops to 23, and the 95% confidence level
increases to 0.35.
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As seen in Figure 8 for X=10 and Y-20, the E/W and East relationship to
RHvPPer 10% _ REjlower 20% axplains about 56% of inter-model variability, while for Rumax
the explained variance is 48% (Figure 8). Actually, RH"PPe" 10% — Rpjlower 20% explains
about 65% of inter-model variability in E/W when we remove two CNRM models
whose E/Ws are outliers (Table 2).

Our results imply that models simulate a stronger MJO if they require a greater
difference in lower-tropospheric RH between strong and weak rain percentiles. In other
words, in the models that simulate stronger MJO activity, convection is more sensitive
to lower-tropospheric humidity. This is consistent with the results of Hannah and
Maloney (2011) and Kim et al. (2012) in which strengthening of the moisture-convection
relationship caused a stronger MJO in different GCMs. Kim et al. (2012) increased the
fractional entrainment rate and re-evaporation of convective condensates in the
convection scheme of the National Aeronautics and Space Administration Goddard
Institute for Space Study GCM to make deep convection more sensitive to
environmental humidity, which led the GCM to simulate an improved MJO.

In Figure 8, results are also presented for the three observed precipitation
products and ERA-I RH data. Note that in all cases we use the RH""¢" 20% yalue that is
obtained using ERA-I precipitation, while for RH*PP¢" 10% their own values are used.
This is because, as mentioned earlier, with GPCP and TRMM it is impractical to

distinguish the lowest 20% percentiles exclusively from others. Although the
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relationship between the moisture sensitivity of convection and the MJO simulation
fidelity seems robust within GCMs, the same relationship cannot explain the
observations. When compared to observations, models have too strong moisture
sensitivity of convection when they represent a skillful MJO, and have too weak MJO
when they simulate a reasonable moisture sensitivity of convection. This is especially
true when Rmax is used as a MJO simulation fidelity metric (Figure 8c). In other words,
GCMs in general underestimate the strength of the MJO for a given moisture sensitivity
of convection. This suggests that processes important in MJO simulation other than
moisture-convection relationship could be commonly misrepresented in GCMs.

The results in this section show that the amount of moistening required for the
transition from weak to strong rain regimes has a robust statistical relationship with the
tidelity metrics of the simulated MJOs. In particular, the above results suggest that the
RHCP diagnostic could be a useful tool as a process-oriented MJO simulation
diagnostic, and that RH“PPeT 10% — REjlower 20% cqyld be a useful metric to look at when

developing climate models and considering their capability to simulate the MJO.

5. Summary and Conclusion
A process-oriented MJO simulation diagnostic based on free tropospheric
relative humidity is proposed and tested. The process-oriented MJO simulation

diagnostic aims to give physical insight into why a GCM simulates a stronger or weaker
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MJO than others (c.f. Wheeler and Maloney 2013). Three aspects are required of such a
diagnostic: i) currently available observations can be used to construct it, ii) changes in
parameterizations alter its behavior, and iii) it has a tight relationship with the fidelity
of the simulated MJO, meaning it has relevance to MJO dynamics, at least in models.

We propose the RH Composite based on Precipitation (RHCP) diagnostic as a
process-oriented MJO simulation diagnostic. The RHCP diagnostic is derived by
binning RH profiles into precipitation percentiles. When applied to model simulations,
it represents the simulated interaction between cumulus convection and environmental
humidity, and so is closely related to the moisture sensitivity of deep and shallow
cumulus parameterizations in the climate model. It is also relevant to theories of the
MJO in which the tight coupling between convection and environmental moisture is a
crucial ingredient.

Statistical relationships between a set of moisture sensitivity metrics deduced
from the RHCP diagnostic and objective measures of the simulated MJ]Os are
investigated. The moisture sensitivity metrics are developed as the mean lower-
tropospheric RH for upper X percent rain events minus that for lower Y percent rain
events (RHYPPT X% — RH'owerY%) = Sensitivity of its skill in explaining MJO simulation
fidelity to adjustable parameters - X and Y - is also investigated. A robust statistical
relationship with the strength of the simulated MJO was found when RHPPeT 10% —

RH'ower 20% jg used as the moisture sensitivity metric. Based on our results, we propose
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RHvPPer 10% _ REjlower 20% a5 3 moisture sensitivity metric that can be used to assess
MJO simulations. The robust statistical relationship of RH"PPer 10% _ pplower 20% yyith
the fidelity of MJO simulation found in this study suggests that a GCM’s ability to
simulate the MJO is closely related to the moisture sensitivity of convection simulated
in the GCM. Further studies are required to reveal effects of specific parameterization
changes on the RHCP diagnostic and the moisture sensitivity metric in each model.
Observational estimates of RH"PPe" 10% — REjlower 20% do not uniformly lie along
the linear relationship derived from GCM simulations. Models require too-strong
moisture sensitivity to produce a reasonable MJO in terms of the MJO simulation
fidelity metrics used, while they show too-weak MJO with reasonable moisture
sensitivity. Although the robust statistical relationship between the moisture sensitivity
metric and the MJO simulation fidelity among GCMs suggests the relevance of the
processes that regulate moisture sensitivity of convection on MJO dynamics in those
GCMs, and probably in nature, the mismatch with observations suggests that there
could be processes other than moisture sensitivity of simulated convection that are
relevant to the MJO dynamics. It is possible that those processes are commonly missing
or misrepresented in models. Longwave cloud radiative feedback could be one such
process. During an active phase of the MJO, an enhanced amount of high cloud reduces
longwave radiative cooling, which means a heating in an anomaly sense. This heating

from cloud-radiation interaction has been suggested as an important destabilization
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mechanism of the MJO in observational (Lin and Mapes 2004, Ma and Kuang 2011;
Landu and Maloney 2011b; Kim et al. 2014), theoretical (Hu and Randall 1994; 1995;
Raymond 2001; Sobel and Gildor 2003; Sobel and Maloney 2012; 2013), and modeling
studies (Bony and Emanuel 2005; Landu and Maloney 2011a; Kim et al. 2011b;
Anderson and Kuang 2012). Future work should focus on the cloud-radiation
interaction as well as identifying other processes relevant to the MJO dynamics.

There are uncertainties in observations. The RH data used in this study is from
reanalysis product, which is a model simulation constrained by observations. Because
observations of RH in areas with strong convection is an extremely difficult task with
current technology, the reanalysis RH in these areas is heavily influenced by model
parameterizations, and therefore could be biased. The two satellite precipitation
products — TRMM 3B42 and GPCP v1.1 use observations of infrared (IR) brightness
temperature to estimate surface rain rate. Behrangi et al. (2012) suggested that IR-based
precipitation products could underestimate the frequency of light rain (< Imm day™),
due to the bias in the relationship they are using between IR brightness temperature
and microwave precipitation measurements. We suspect that the lack of weak rain
events in TRMM 3B42 and GPCP v1.1 (Figures 1 and 2), which led us to excluding these
data when estimating the mean lower-tropospheric RH for weak rain regime
(RH'"wer20%) " could be due to this weakness of the data. Advances in retrieval

algorithms for lower tropospheric RH and light rain rates, and in data assimilation

26



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

schemes used in creating reanalysis products will help to constrain the moisture

sensitivity metric with a higher confidence on observations.
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Table list

Table 1. List of participating models. Horizontal resolution (°) of their atmospheric
component models and convection schemes are also indicated.

Table 2. MJO simulation fidelity metrics derived from observations and participating
models.

Table 3. Correlation coefficients between measures of the fidelity of MJO simulation.

39



754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

Figure list

Figure 1. Precipitation amount (mm day') corresponding to precipitation percentiles.
Lower 70 percentiles are presented.

Figure 2. Same as Figure 1, except for upper 30 percentiles.

Figure 3. RHCP diagnostics created using ERA-I (a-c) and MERRA (d-e) relative
humidity (%) and precipitations (mm day!) from a, d) GPCP (1997-2008), b, e) TRMM
(1998-2008), and c) ERA-I (1989-2008). f) Uncertainty of the observed RHCP diagnostic,
estimated as the standard deviation of all five results divided by the average of them.
Daily averaged precipitation and RH over the equatorial Indian Ocean (10°S-10°N, 60-
90°E) are used to construct the RHCP diagnostic.

Figure 4. RHCP diagnostics at 850 hPa created using all participating models (color
lines), and that with three different precipitation products combined with ERA-I RH
(black lines). In the lower part of left panel, the method to calculate the moisture
sensitivity metric is illustrated.

Figure 5. Same as Figure 4, except that the RHCP diagnostics are constructed using 700
hPa RH.

Figure 6. Correlation coefficients between the moisture sensitivity metric (RH*PPe" ¥% —
RH'"ower Y%) and three MJO simulation fidelity metrics: a) E/W ratio, b) East power, and c)
Rmax. The correlation coefficients are displayed as a function of X and Y. d) Average of

all results (a-c).

Figure 7. (left) Sensitivity of correlation coefficients between the moisture sensitivity
metric (RH¥PPe X% — RH!0Wer Y%) and three MJO simulation fidelity metrics to a) Y with
X fixed as 10, and to b) X with Y fixed as 20. (right) Same as left panels, but percentage
variance (%) of inter-model spread in MJO simulation fidelity metrics explained by the
moisture sensitivity metric. Black solid line in each panel represents the average of
correlation coefficients (left) or percentage variance (right) of all MJO simulation fidelity
metrics.

Figure 8. Scatter plot between the moisture sensitivity metric (RH"“PPe" X% —

RH'ower Y%) with X=10 and Y=20 and three MJO simulation fidelity metrics: a) E/W ratio,
b) East power, and c) Rmax. Open circles represent model simulations, while the
observed values are indicated by closed triangles. The linear fit to the model data and
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792  the percentage variance of the MJO simulation fidelity metrics explained by the RH
793  metric and the linear relationship is also displayed in each panel.
794
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795  Table 1. List of participating models. Horizontal resolution (°) of their atmospheric
796  component models and convection schemes are also indicated.

797
Horizontal
Model resolution Convection scheme
(Atmos.)
bccr_bem?2_0 1.9x1.9 Bougeault (1985)
ccema_cgem3_1_t63 19x1.9 Zhang and McFarlane (1995)
cnrm_cm3 1.9x1.9 Bougeault (1985)
Moorthi and Suarez (1992);
gfdl_cm2_0 2x2:5 Tokioka et al. (1988)
Moorthi and Suarez (1992);
gfdl_cm2_1 2x2:5 Tokioka et al. (1988)
giss_aom 3x4 Del Genio and Yao (1993)
hadgem3 2.86 x 1.25 Gregory and Rowntree (1990)
iap_fgoalsl_0_g 2.8x2.8 Zhang and McFarlane (1995)
ingv_echam4 1.1x1.1 Tiedtke (1989); Nordeng (1994)
inmcm3_0 4x5 Betts (1986)
) Arakawa and Schubert (1974);
miroc3_2_medres 28X28 | pin and Randall (1998); Emori et al. (2001)
miub_echo_g 39x39 Tiedtke (1989); Nordeng (1994)
mpi_echamb 1.9x1.9 Tiedtke (1989); Nordeng (1994)
i Arakawa and Schubert (1974);
mri_cgem2_3_2a 28X28 | pan and Randall (1998); Emori et al. (2001)
Zhang and McFarlane (1995);
BNU-ESM 28x2.8 Neale et al. (2008); Richter and Rasch (2008)
CanESM2 2.8x2.8 Zhang and McFarlane (1995)
CMCC-CM 0.75x 0.75 Tiedtke (1989); Nordeng (1994)
CMCC-CMS 1.9x1.9 Tiedtke (1989); Nordeng (1994)
CNRM-CM5 14x14 Bougeault (1985)
FGOALS-s2 28x1.6 Tiedtke (1989); Nordeng (1994)
IPSL-CM5A-LR 3.75x 1.8 Emanuel (1991)
Arakawa and Schubert (1974);
MIROC4h 0-56 x 056 Pan and Randall (1998); Emori et al. (2001)
Arakawa and Schubert (1974);
MIROC-ESM 28x2.8 Pan and Randall (1998); Emori et al. (2001)
Arakawa and Schubert (1974);
MIROC-ESM-CHEM 28x2.8 Pan and Randall (1998); Emori et al. (2001)
MPI-ESM-LR 1.9x1.9 Tiedtke (1989); Nordeng (1994)

42



798

MPI-ESM-MR 19x1.9 Tiedtke (1989); Nordeng (1994)
Tiedtke (1989); Nordeng (1994);
MRI-CGEMS3 Lix11 Yukimoto et al. (2011)
1 .
NorESM1-M 25519 Zhang and McFarlane (1995);

Neale et al. (2008); Richter and Rasch (2008)
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799  Table 2. MJO simulation fidelity metrics derived from observations and participating
800 models.

801
Data East/West East Rimax
GPCP/AVHRR 2.20 0.22 0.67
TRMM/AVHRR 2.73 0.20 0.67
ERA-I/AVHRR 2.09 0.10 0.67
bcer_bem2_0 3.50 0.21 0.47
cccma_cgem3_1_t63 1.29 0.06 0.3
cnrm_cm3 5.91 0.28 0.43
gftdl_cm?2_0 2.58 0.15 0.52
gfdl cm?2_1 1.96 0.12 0.37
giss_aom 0.7 0.03 0.12
hadgem3 1.24 0.07 0.24
iap_fgoalsl _0_g 0.9 0.03 0.15
ingv_echam4 1.03 0.07 0.33
inmcm3_0 0.63 0.04 -
miroc3_2_medres 1.68 0.08 0.33
miub_echo_g 1.89 0.25 0.59
mpi_echamb 1.85 0.22 0.4
mri_cgcm?2_3_2a 1.38 0.07 0.46
BNU-ESM 1.6 0.09 0.34
CanESM2 0.87 0.03 0.04
CMCC-CM 3.05 0.27 0.61
CMCC-CMS 2.14 0.25 0.45
CNRM-CM5 4.95 0.46 0.67
FGOALS-s2 1.56 0.13 0.36
IPSL-CM5A-LR 1.59 0.06 0.26
MIROC4h 1.62 0.05 0.51
MIROC-ESM 0.91 0.04 0.24
MIROC-ESM-CHEM 0.65 0.04 0.16
MPI-ESM-LR 1.31 0.14 0.35
MPI-ESM-MR 1.62 0.19 0.35
MRI-CGCM3 3.15 0.25 0.56
NorESM1-M 2.64 0.15 0.51
802
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803  Table 3. Correlation coefficients between measures of the fidelity of MJO simulation.
804

East/West East Rumax*

East/West 1 0.83* 0.67*

East - 1 0.74*
Rimax - - 1

805
806  *: Statistically significant at 95% confidence level

807  *:inmcm3_0 is missing OLR data.
808
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810

811  Figure 1. Precipitation amount (mm day) corresponding to precipitation percentiles
812  over the equatorial Indian Ocean (10°S-10°N, 60-90°E). Lower 70 percentiles are

813  presented.
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Figure 2. Same as Figure 1, except for upper 30 percentiles.
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Figure 3. RHCP diagnostics created using ERA-I (a-c) and MERRA (d-e) relative
humidity (%) and precipitations (mm day™!) from a, d) GPCP (1997-2008), b, e) TRMM
(1998-2008), and c) ERA-I (1989-2008). f) Uncertainty of the observed RHCP diagnostic,
estimated as the standard deviation of all five results divided by the average of them.
Daily averaged precipitation and RH over the equatorial Indian Ocean (10°S-10°N, 60-
90°E) are used to construct the RHCP diagnostic.
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Figure 4. RHCP diagnostics at 850 hPa created using all participating models (color
lines), and that with three different precipitation products combined with ERA-I RH
(black lines). In the lower part of left panel, the method to calculate the moisture
sensitivity metric is illustrated.
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841  Figure 5. Same as Figure 4, except that the RHCP diagnostics are constructed using 700
842 hPaRH.
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846
847  Figure 6. Correlation coefficients between the moisture sensitivity metric (RH*PPeT ¥% —
848  RH'"weY%) and three MJO simulation fidelity metrics: a) E/W ratio, b) East power, and c)
849  Rmax. The correlation coefficients are displayed as a function of X and Y. d) Average of
850  all results (a-c).
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Figure 7. (left) Sensitivity of correlation coefficients between the moisture sensitivity
metric (RHYPPeT X% — R 'OWer Y%) and three MJO simulation fidelity metrics to a) Y with
X fixed as 10, and to b) X with Y fixed as 20. (right) Same as left panels, but percentage
variance (%) of inter-model spread in MJO simulation fidelity metrics explained by the
moisture sensitivity metric. Black solid line in each panel represents the average of
correlation coefficients (left) or percentage variance (right) of all MJO simulation fidelity
metrics.
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Figure 8. Scatter plot between the moisture sensitivity metric (RH"*PPeT X% —

RH'"ower Y%) with X=10 and Y=20 and three MJO simulation fidelity metrics: a) E/W ratio,
b) East power, and c) Rmax. Open circles represent model simulations, while the
observed values are indicated by closed triangles. The linear fit to the model data and
the percentage variance of the MJO simulation fidelity metrics explained by the RH
metric and the linear relationship is also displayed in each panel.
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